Self Organizing Feature Maps and Their Applications to Robotics
نویسنده
چکیده
The self-organizing feature maps developed by Kohonen appear to capture some of the advantages of the natural systems on which they are based. A summary of the operation of this form of artificial neural network is presented. It was concluded that the primary benefits of using self-organizing feature maps result from their adaptability and plasticity while most problems are largely caused by the lack of a rigorous mathematical foundation. Two different robotics applications are described. In the first, developed by Martinez and Schulten, a hierarchical structure composed of many self-organizing feature maps is used to control a five degree of freedom robot arm. While it was noted that there may be some practical problems, the general idea of using a hierarchical structure appears sound and may be applicable to a wider range of problems. The second robotics application was developed by Saxon and Mukherjee. They used a single self-organizing feature map to learn the motion map of a two degree of freedom arm. The use of such a system should simplify path planning by combining multiple constraints into a 2-D structure. Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MSCIS-91-46. This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/405 Self Organizanig Feature Maps and Their Application To Robotics MS-CIS-91-46 GRASP LAB 268
منابع مشابه
Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملمنطقه بندی حوزه های آبخیز با به کارگیری نوعی از شبکه های عصبی مصنوعی به منظور تحلیل فراوانی منطقه ای سیلاب
Self-Organizing Feature Maps (SOFM) are a variety of artificial neural networks that their applications in the areas of pattern recognition and data clustering makes them noticeable tools to perform regional flood frequency analysis (RFFA). In this study, ability of Self-Organizing Feature Maps for regionalization of Sefidrood watershed in order to perform regional flood frequency analysis usin...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملRapid learning in robotics
Robotics deals with the control of actuators using various types of sensors and control schemes. The availability of precise sensorimotor mappings – able to transform between various involved motor, joint, sensor, and physical spaces – is a crucial issue. These mappings are often highly non-linear and sometimes hard to derive analytically. Consequently, there is a strong need for rapid learning...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کامل